Contents

Section 1: Lectures

1	Leo	cture 1: Operator and Superoperator	
	Alg	gebra	3
	1.1	Quantum States	4
	1.2	Operators	6
	1.3	Observables and Expectation Values	12
	1.4	Time Evolution of Quantum States	14
	1.5	Superkets and Superoperators	15
		Summary	17
		References	17
2	Le	cture 2: Spin	18
	2.1	The Orbital Angular Momentum of a Particle	18
	2.2		21
	2.3		28
	2.4	The Spin of Elementary Particles	30
	2.5	The Nuclear Spin	31
	2.6	Appendix: The Hamiltonian for a Particle in a	
		Magnetic Field	32
		Summary	33
		References	34

Lectures On Spin Dynamics: The Theoretical Minimum By Giuseppe Pileio © Giuseppe Pileio 2022 Published by the Royal Society of Chemistry, www.rsc.org

3	Lecture 3: The Quantum Description of An Isolated Spin-1/2		
	3.1 3.2	The Quantum Description of an Isolated spin-1/2 Spin Angular Momentum Operators Summary	36 40 46
4	Le	cture 4: Irreducible Spherical Tensors	47
	4.1	Cartesian, Spherical and Irreducible Tensors	48
	4.2	Rotational Properties of Irreducible Spherical Tensors	53
	4.3		54
	4.4		56
		Summary	58
		References	58
5	Le	cture 5: Perturbation Methods	59
	5.1	Perturbation Theory	60
	5.2	Average Hamiltonian Theory	63
	5.3	Interaction Frame Transformations	66

5.4	Hermiticity of Combinations of Hermitian			
	Operators	67		
	Summary	68		
	References	69		

6	Lecture 6: The Spin Hamiltonian		70	
	6.1	A General Form for the Spin Hamiltonian	71	
	6.2	The Zeeman Hamiltonian	73	
	6.3	The Secular Approximation	75	
	6.4	The Chemical Shift Hamiltonian	76	
	6.5	The Dipolar Coupling Hamiltonian	79	
	6.6	The Indirect Coupling Hamiltonian	81	
	6.7	The Quadrupolar Coupling Hamiltonian	83	
	6.8	Motional Averaging in Isotropic Liquids	85	
		Summary	86	

	87
The Radiofrequency Field Hamiltonian	88
The Rotating Frame	90
On-resonance and Off-resonance Fields	92
Bloch–Siegert Shift	9 4
Summary	96
References	96
3	i i i i i i i i i i i i i i i i i i i

8 Lecture 8: The Dynamics of an Isolated Spin-1/2

8.1	The Dynamics of an Isolated Spin-1/2 Under the	
	Influence of the Zeeman Hamiltonian	98
8.2	The Dynamics of an Isolated Spin-1/2 Under the	
	Influence of a Radiofrequency Pulse	101
	Summary	104

9	Lecture 9: The Density Operator		
	9.1	The Density Operator	106
		The Density Matrix	108
	9.3	The Density Operator in Terms of Spin Angular	
		Momentum Operators	109
	9.4	Populations and Coherences	110
	9.5	The Liouville–von Neumann equation	114
		Summary	117

Lecture 10: The Dynamics of a Single Spin-1/2 Ensemble			
10.1	Interaction Hamiltonians and Pulse		
	Sequences	119	
10.2	The Equilibrium Density Operator for a		
	Single Spin-1/2 Ensemble	119	
10.3	The Dynamics of a Single Spin-1/2 Ensemble		
	Under the Influence of a Radiofrequency Pulse	122	
	Sing 10.1 10.2	 Single Spin-1/2 Ensemble 10.1 Interaction Hamiltonians and Pulse Sequences 10.2 The Equilibrium Density Operator for a Single Spin-1/2 Ensemble 10.3 The Dynamics of a Single Spin-1/2 Ensemble 	

97

10.4	The Dynamics of a Single Spin-1/2 Ensemble Under		
	the Influence of the Spin Hamiltonian	125	
	Summary	126	

11 Lecture 11: The Dynamics of an Ensemble of Coupled Spin-1/2 Pairs 127

11.1	The Quantum Description of an Isolated Spin-1/2 Pair	128
11.2	The Density Operator for an Ensemble of Spin-1/2 Pairs	132
11.3	The Equilibrium Density Operator for an Ensemble	
	of Spin-1/2 Pairs	136
11.4	The Dynamics of an Ensemble of Spin-1/2 Pairs	
	Under the Influence of a Radiofrequency Pulse	137
11.5	The Dynamics of an Ensemble of Spin-1/2 Pairs	
	Under the Influence of the Spin Hamiltonian	139
	Summary	142

Lecture 12: A Relaxation Theory of 12 **Nuclear Spin States** 143 Nuclear Spin Relaxation 144 12.1 12.2 A Phenomenological Approach to Spin Relaxation 144 12.3 Relaxation Master Equation 146 12.4 The Correlation Time 149 12.5 Justification of Assumptions 150 12.6 The Total Relaxation Superoperator 152The Relaxation Superoperator for the Dipolar 12.7 Mechanism 157 The Dipolar Contribution to T_1 and T_2 Relaxation 12.8 Decay Time Constants 158 Summary 161 References 162

Section II: Workshops

13	Workshop	1: Spin	States	And	Operators	165
----	----------	---------	--------	-----	-----------	-----

Questions	165
Questions and Answers	166

14	Workshop 2: Spherical Tensors and Spin Hamiltonians	172
15	Workshop 3: The Dynamics of Single Spin-1/2 Systems	178
16	Workshop 4: The Dynamics of an Ensemble of Spin-1/2 Pairs and Spin Relaxation	188
Further Reading		201
Subject Index		202