
New insights on a divalent cation channel by >100 kHz magic-angle spinning NMR

M.Bonaccorsi 1*, T. Schubeis 1, A. Bertarello 2, G. Pintacuda 1

¹Université de Lyon, Centre de Résonance Magnétique Nucléaire à Très Hauts champs (UMR 5082 – CNRS / Ecole Normale Supérieure de Lyon / Université Claude Bernard Lyon 1), 5 rue de la Doua, 69100 Villeurbanne, France Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne

*e-mail: marta.bonaccorsi@ens-lyon.fr

(PDB ID: 410U) in presence of Mg²⁺ Right: Top view of the same symmetric state side-by-side to one of the asymmetric

states observed by cryo-EM in the absence

CorA: a bacterial M²⁺-channel

Mg²⁺ is the most abundant divalent cation in the cell. The pentameric channel (5x42 kDa) CorA is the primary uptake system of Mg²⁺ in prokaryotes

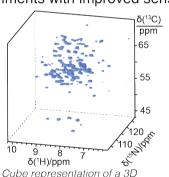
Structural information is available [1,2] but the mechanism of transport regulation remains elusive.

Membrane proteins at fast MAS

Sample preparation

of Mg²⁺(PDB ID: 3JCG).

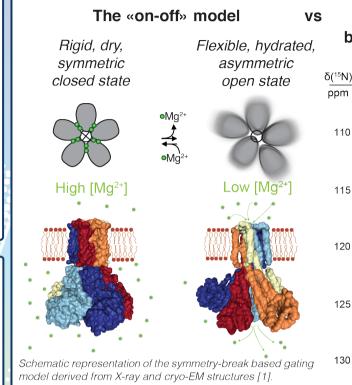
1. Expression of [¹H, ¹³C, ¹⁵N]-CorA in detergent in E.coli


2. Purification 3. Reconstitution in multilamellar vesicles into 0.7 mm rotor of DMPC

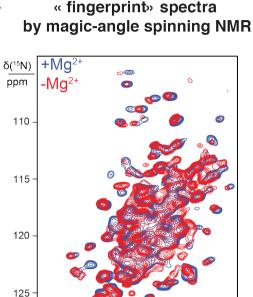
4. Direct centrifugation

Resonance assignment

 Long coherent lifetimes at 110 kHz MAS and high magnetic fields (800-1000 MHz) allow the acquisition of ¹H-detected multidimensional experiments with improved sensitivity and resolution.


Cube representation of a 3D ¹H-¹⁵N-¹³Ca spectrum of CorA.

- The acquisition of an extended dataset of H^N- and Ha-detected 3D experiments [3,4] combined with automatic assignment by FLYA [5] allows fast, unambigous resonance assignment.


(H)COCAHA/(H)CO(N)CAHA δ(1Hα) | 129 | E30 | V31 | M32 | N33 | Y34 | S35 | 4.60 | 4.64 | 4.29 | 5.08 | 5.61 | 5.34 | 4.86 | 9 59.8 53.6 60.1 55.4 52.0 56.4 56.1 δ(¹³Cα)/ppm

Example of residue linking based on 13C', 13Ca, Ha correlations.

Is an "on-off" model sufficient?

Highly similar room-temperature MAS NMR spectra obtained for CorA in lipid bilayers with and without Mg²⁺.

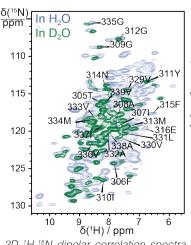
2D 1H-15N dipolar correlation spectra by MAS NMR of CorA embedded in hydrated DMPC bilayers recorded at 1 GHz 1H Larmor frequency and 107 kHz MAS.

A simple two-state model is not enough to describe Mg²⁺ transport regulation in CorA.

Site-specific backbone dynamics

(H)CONH-based pulse sequence for the measurement of ¹⁵N relaxation rates.

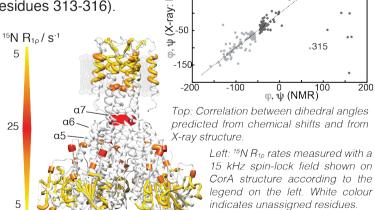
Examples of 15N R_{1p} relaxation decays together with the corres-


Site-specific ¹⁵N R₁₀ rates, reporting on ns-us dynamics, are measured introducing a relaxation filter in 2D/3D dipolar correlation modules and monitoring the signal decay of each amide pairs in a series of experiments with increasing relaxation delays.

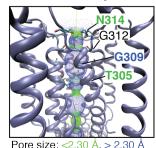
A dynamic hydrated closed channel

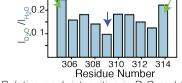
At high [Mg²⁺] good agreement was found with secondary structure from X-ray and cryo-EM, with small local variations. The lipid environment stabilizes the structure of the periplasmic loop (residues 313-316).

Extended resonance assignment was not accessible in helices 5-7 due to incomplete spectral appearance.


Measurement of ¹⁵N R₁₀ rates revealed increased dynamics in this region: Mg2+-bound CorA is a fluctuating structure.

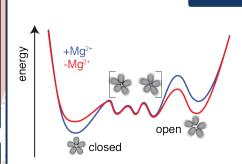
2D ¹H-¹⁵N dipolar correlation spectra of fully protonated CorA acquired in H₂O and in D₂O. Residues in transmembrane regions are labelled.


[1] Nordin et al. Biochem. Journ. 2013, 451, 365


[2] Matthies et al. Cell 2016, 164, 747

Spectra of [1H, 13C, 15N]-CorA in DMPC washed with D2O revealed that the transmembrane portion does not exchange with water. Nonetheless, a slow passage of water is permitted and affects signal intensity.

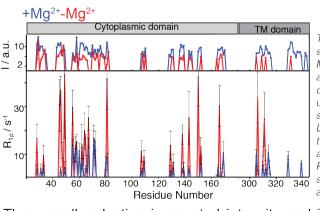
The transmembrane pore is hydrated in Mg²⁺-bound state.


Relative peak intensities in D2O and H2O in the pore-lining transmembrane helix (top) correlate with pore size calculated with HOLE (left)

References

[3] Barbet-Massin et al., J. Am. Chem. Soc. 2014, 136, 12489 [6] Johansen, Bonaccorsi et al. 2021 submitted

[4] Stanek et al. *Angew. Chem.* 2016,55,15504 [5] Schmidt and Güntert J. Am. Chem. Soc. 2012,134,12817


Conclusions

The investigation of CorA by MAS NMR allowed to extend the previous two-state model. We find that CorA is able to explore a wide conformational landscape both in the presence and absence of Mg²⁺. The determining factor for CorA to visit conducting states is the increase in backbone flexibility upon release of Mg²⁺.

The comparison with fingerprint spectra of the Mg²⁺-free form, together with Small Angle Neutron Scattering and Meta-Dynamics simulations, revealed a conservation of the average structural features and the existence of asymmetric states independently from Mg²⁺ binding [6].

Top: ¹H-¹⁵N dipolar correlation spectra of 15N- Ala CorA at 60 kHz MAS, with assignment of all the alanine residues. Amino acid-specific isotopic enrichment was used as a strategy to reduce spectral crowding.

Left: Comparison of peak intensities in 3D 1H-15N-13Ca spectra (top) and of site-specific backbone 15N R_{1p} rates measured with a 15 kHz spin-lock field (bottom) plotted

The overall reduction in spectral intensity and increase in ¹⁵N R₁₀ rates indicate that release of Mg²⁺ induces an overall increase in CorA backbone dynamics.