EXO-METABOLOMICS FINGERPRINT OF BLADDER CANCER PROGRESSION USING ¹H-NMR

Invasive and non-invasive tumour cells show two different metabolisms

G. Ciufolini, ‡ G. Petrella, ‡ R. Vago, † D.O. Cicero, ‡

- [‡] Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", 00133 Rome, Italy
- † Urological Research Institute, IRCCS Ospedale San Rafaele, 20132 Milan, Italy; Faculty of Medicine and Surgery, Università Vita-Salute San Rafaele, 20132 Milan, Italy E-mail: giorgia.ciufolini@live.com

Introduction

- Urothelial bladder cancer (UBC) is the most common tumor of the urinary system.
- Divided into low-grade non-muscular invasive bladder cancer (NMIBC) and high-grade muscular invasive bladder cancer (MIBC).
- Problem: lack of prognostic markers that can anticipate the progression of the cancer.

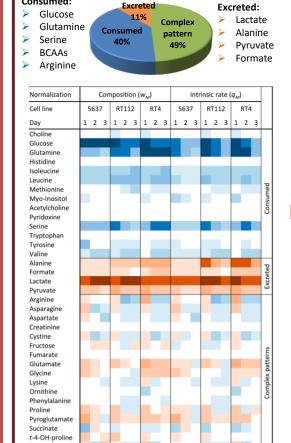
Aim

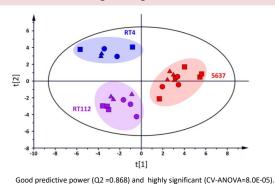
Consumed:

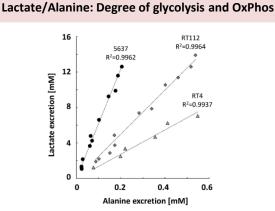
Investigate the correlation between different risks of progression and cells metabolism, in order to provide new prognostic markers for in vivo analysis.

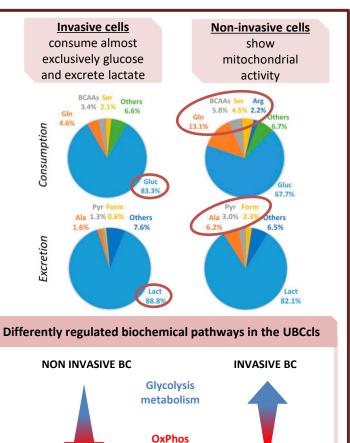
In this study, we used ¹H-NMR to characterize the intake of nutrients and the excretion of products in the extracellular medium of three urothelial bladder cancer cell lines (UBCcls).

Methods

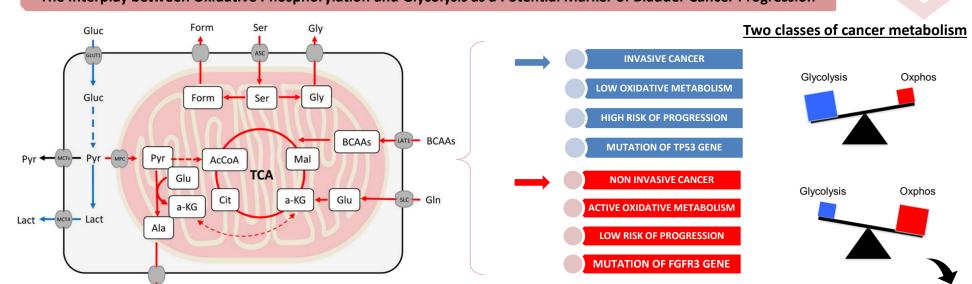

Cells were grown in RPMI culture medium for 1, 2 or 3 days in separated containers.


Cellular model that may represent different types of tumors 1, 2, 3


UBCcls	Genetic alteration	Genetic instability	Model	Risk of progression
5637	TP53 mut	++	Aggressive	High
RT112	TP53/FGFR3 mut	+	Non-aggressive	Unknown
RT4	FGFR3 mut	+	Non-aggressive	Low


Results: Exo-metabolomic profile

OPLS-DA separation due to pyruvate and serine metabolisms, arginine, glutamine, and BCAAs.



metabolism

The Interplay between Oxidative Phosphorylation and Glycolysis as a Potential Marker of Bladder Cancer Progression

References

<u>First time the importance of oxidative phosphorylation for BC cells has been observed.</u>

- 1 Earl et al. The UBC-40 Urothelial Bladder Cancer cell line index: a genomic resource for functional studies. BMC Genomics 16, (2015)
- 2 Simabuco et al. p53 and metabolism: from mechanism to therapeutics. Oncotarget 9 (34), 23780-23823. (2018) 3 Frattini et al. A metabolic function of FGFR3-TACC3 gene fusions in cancer. Nature, 553,222-227 (2018).

Ala