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ABSTRACT Ros zinc finger domain structure

Downhill folding has been defined as a unique thermodynamic process involving a conformations
ensemble that progressively loses structure with the decrease of protein stability . Downhill folders are
quite rare In nature because there isn’t an energetically substantial folding barrier that can protect
against aggregation and proteolysis [24. We have previously demonstrated that the prokaryotic zinc
finger protein Ros87 shows a folding/unfolding process in which a metal binding intermediate converts
to the native structure through a delicate barrier-less downhill transition bl Significant variation in
folding scenarios can be detected within protein families with high sequence identity and very similar
folds and for the same sequence by varying conditions. For this reason, here we show, by means of
DSC, CD and NMR, that also in different pH and ionic strength conditions Ros87 is capable to conserve
Its partly downhill folding mechanism demonstrating that the downhill mechanism can be found under a
much wider range of conditions. We also show that mutations of Ros87 zinc coordination sphere
produces a different folding scenario demonstrating that the organization of the metal ion core Is
determinant in the folding process of this family of proteins.
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o _ o _ (A) “Atom-by-atom” unfolding behavior of Ros87 in 278-343 K range. Ros87 ribbon

298-372 K; the inset shows the melting followed at 222 nm in phosphate buffer at pH = 6.515. (C) DSC thermal unfolding curves and fitting of two different heating shows the Tm scale. Each atom color corresponds to the Tm of its sigmoidal transition. (B)
cycles in Tris buffer. Baselines are reported with a dashed line. (D) DSC thermal unfolding curves and fitting in phosphate buffer 1H-15N HSQC spectrum at 343 K.

Heating 1 Heating 2
Tm (K) AH (kJ/mol) Tm (K) AH (kJ/mol)
323.1:0:1 6.2+0.1 322.8+0.1 55%0.2
3625+01 1008+0.1 361.2+0.2 98.1+0.2

®

o m— Heating 1
{ = Heating 2
J == constructed baselines

w
N

w
o
L

N
@
1

(kJ-mol-'K-")

measured ellipticity (mdeg)

Molar Heat Capacity

N
(2]
a 1 a

280 300 320 340
Temperature (K)

N
5
1

225 230 235 240 245

Wavelength (nm)
(A) CD spectra recorded at increasing temperatures (298-372 K). (B) CD melting followed at 222 nm in the temperature range 298-372 K.
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(A) CD thermal unfolding. Data were fitted to a two-state model. (B) DSC thermal unfolding curves and fitting of two different heating cycles of Ros87_C27D. (B) DSC thermal unfolding curves and fitting of two different heating cycles of apo-Ros87.
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