

¹H and ¹⁷O NMR relaxation studies of the Fe^{III}-Tiron system

A. Nucera, F. Carniato, M. Botta

U GIDRM

University of Eastern Piedmont. Department of Sciences and Technological Innovation. Viale Teresa Michel 11, 15121 Alessandria, Italy.

²⁹⁸ $ au_{ m M}$ / s	$(1.8 \pm 0.7) \cdot 10^{-5}$	$\Delta H_{\rm M}$ / kJ mol ⁻¹	57.0 ± 2.5	$^{298} au_{ m M}$ / s	$(2.9 \pm 0.6) \cdot 10^{-7}$	$\Delta H_{\rm M}$ / kJ mol ⁻¹	55.0 ± 11.8	²⁹⁸ $ au_{ m M}$ / s	/	∆ <i>H</i> _M / kJ mol ⁻¹	/
$^{298} au_{ m R}/ m ps$	34.7 ± 2.5	$E_{ m R}/~{ m kJ}~{ m mol}^{-1}$	15.0 ± 5.0	$^{298} au_{ m R}/ m ps$	75.0 ± 5.7	$E_{ m R}/~{ m kJ}~{ m mol}^{-1}$	$17.0\ \pm 4.7$	²⁹⁸ $ au_{ m R}$ /ps	/	$E_{ m R}$ / kJ mol ⁻¹	/
$^{298} au_{ m R}^{ m SS}/ m ps$	/	$E_{\rm R}^{\rm SS}$ / kJ mol ⁻¹	/	$^{298} au_{ m R}^{ m SS}/ m ps$	20.0 ± 8.4	$E_{ m R}^{ m SS}$ / kJ mol ⁻¹	12.0 ± 1.2	$^{298} au_{ m R}^{ m SS}/ m ps$	35.3 ± 0.1	$E_{ m R}^{ m SS}$ / kJ mol ⁻¹	15.0 ± 1.0
q	4 ^a	r / Å	2.69 ª	q	2 ª	<i>r</i> / Å	2.70 ^a	q	0 a	<i>r</i> / Å	/
q^{SS}	0 a	<i>r^{ss}</i> / Å	/	q^{SS}	2 ª	<i>r^{ss}</i> / Å	3.4 ª	q^{SS}	6 a	r ^{SS} /Å	3.4 ª
Tables 2-4 *. Parameters obtained from the simultaneous fit of ¹ H NMRD and ¹⁷ O NMR data (^a = parameters fixed). Additional parameters fixed: ²⁹⁸ D = 2.24 · 10 ⁵ cm ² s ⁻¹ ; E _D = 20 kJ mol ⁻¹ and a = 3.5 Å).											

Conclusions: All the different species of the Fe(III)-Tiron system are amenable to characterization by ¹H and ¹⁷O relaxometric techniques. The global analysis of the data explains the differences in the values of R_1 and R_2 among the various species based on differences in the state of hydration, in the exchange rate of the water molecules of the inner coordination sphere and in the molecular tumbling. A significant effect of the water molecules hydrogen-bonded to the sulfonate groups of the ligand is highlighted in the case of the complexes with q = 2 and q = 0.

References:

[1] W. McBryde, *Can. J. Chem.*, 1964, **42**, 1917

[2] Aime S., Botta M., Esteban-Gómez D., Platas-Iglesias C., Mol. Phys., 2019, 117, 898.

[3] E. Farkas, H. Csóka, J. Inorg. Biochem. 2002, 89, 219-226.