Structure and Dynamics of Crystalline Carbimazole by NMR Crystallography and Relaxometry

Andrea Scarperi^a, Giovanni Barcaro^b, Aleksandra Pajzderska^c, Francesca Martini^{a,d}, Elisa Carignani^{a,e}, Marco Geppi^{a,d}

^a Department of Chemistry and Industrial Chemistry, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy; ^c Department of Radiospectroscopy, Faculty of Physics, Adam Mickiewicz University, University of OrganoMetallic Compounds, Italian National Council for Research, CNR/ICCOM, via G. Moruzzi 1, 56124 Pisa, Italy;

Introduction

Molecular dynamics and structural characteristics of a solid drug strongly affect its pharmaceutical properties and release profiles. Solid State NMR (SSNMR) has been proved to be a very important technique in the study of pharmaceuticals, allowing many different experiments to be performed in order to obtain important information on dynamic and structural properties on a broad space and time range [1].

Sample: Carbimazole

Carbimazole is one of the most used drugs currently for the treatment of hyperthyroidism and Grave's disease. Two X-ray crystal structures are reported in the Cambridge Structural Database (JOVDIH and JOVDIH01) [2][3].

The absence of multiplicity of resonance of the signals confirms the presence of a single independent molecule in the unit cell (Z'=1).

NMR Crystallography

¹H MAS and CRAMPS Spectra

The ¹H MAS spectrum recorded at $v_{MAS} = 22$ kHz (Figure 3a) shows a scarce resolution. In order to improve the spectral resolution, MAS had to be combined with suitable pulse sequences, such as Phase Modulated Lee-Goldburg (PMLG) and Decoupling Using Mind Boggling Optimization (DUMBO), aimed at better removing the ¹H homonuclear dipolar coupling.

DFT-GIPAW

Assignme nt	Experime ntal Isotropic Chemical Shift δ (ppm)	δ at the DFT level; X-ray structure (ppm)	δ at the DFT level: only H optimized (ppm)	δ at the DFT level: all atoms optimized (ppm)
H7	2.31	2.28	2.36	2.46
H4	4.28	4.20	4.30	4.16
H6	5.59	5.77	5.45	5.44
H2	6.85	7.17	6.84	6.80
Н3	7.85	7.58	7.92	8.02
RMSD	-	0.19	0.07	0.13
C7	16.0	10.9	13.6	14.1
C4	35.6	36.5	35.7	34.9
C6	66.8	68.6	68.8	69.2
C2	111.0	116.5	111.6	110.7
C3	119.8	123.7	121.9	122.1
C5	148.7	147.8	149.1	151.1
C1	166.0	159.8	163.0	161.7
RMSD	-	4.0	1.8	2.4

The lowest RMSD value is achieved when only H atoms are optimized [4].

• Orthorhombic unit cell; a = 7.698 Å; b = 6.650 Å; c = 17.388 Å

Strong intermolecular dipolar interactions are observed between the methyl groups 4 and 7 [4].

CISUP (Centre for Instrument Sharing-University of Pisa) is acknowledged for the use of the Bruker Avance Neo 500 Solid State NMR Spectrometer.

References:

M. Geppi; G. Mollica; S. Borsacchi; C.A. Veracini. Applied Spectroscopy Reviews 2008, 43, 202.
C. Delage; F. Faure; J.M. Leger; C. Raby; M. Goursolle. C. R. Acad. Sci. Paris 1990, 311, 781–784.
D. Das; G. Roy; G. Mugesh. J. Med. Chem. 2008, 51, 7313–7317.
A. Scarperi; G. Barcaro; A. Pajzderska; F. Martini; E. Carignani; M. Geppi. Molecules 2021, 26, 4577.

NMR Methods. Solid State NMR spectra were recorded on a Bruker Avance Neo spectrometer working at the Larmor frequencies of 500.13 and 125.77 MHz for ¹H and ¹³C nuclei, respectively, equipped with a tripleresonance CP-MAS probehead accommodating rotors with an external diameter of 2.5 mm. The 90 degree pulse duration was 2.08 and 5 µs for ¹H and ¹³C nuclei, respectively. The ¹H-¹³C CP-MAS spectrum was recorded at a MAS frequency of 22 kHz accumulating 32 scans. The ¹H DMD-MAS spectrum was recorded at a MAS frequency of 12 kHz accumulating 32 scans. The ¹H DMD-MAS spectrum was recorded at a MAS frequency of 12 kHz accumulating 32 scans. The ¹H DMD-MAS spectrum was recorded at a MAS frequency of 12 kHz, using a contact time of 0.5 ms, accumulating 128 rows and 64 scans. The ¹H DQ-SQ spectrum was recorded at a MAS frequency of 12 kHz, using the eDUMBO-122 scheme for decoupling during acquisition, accumulating 256 rows and 16 scans. ¹H and ¹³C spin-lattice relaxation times were measured using Inversion Recovery and Torchia pulse sequences, respectively, spinning the sample at the magic angle with a frequency of 22 kHz; the variable delay ranged from 1 ms to 10 s for the measurement of the ¹H nuclei and from 1 ms to 80 s for the measurement of the ¹³C nuclei. In all relevant experiments, a SPINAL-64 decoupling scheme was applied on ¹H nuclei while acquiring the ¹³C nuclei. In all relevant experiments, a SPINAL-64 decoupling scheme was applied on ¹H nuclei while acquiring the ¹³C nuclei. In all relevant experiments, a SPINAL-64 decoupling scheme was applied on ¹H nuclei while acquiring the ¹³C nuclei. In all relevant experiments, a SPINAL-64 decoupling scheme was applied on ¹H nuclei while acquiring the ¹³C spinal.