

NMR: A POWERFUL TOOL TO CHARACTERIZE PROTIC IONIC LIQUIDS

<u>Giselle de Araujo Lima e Souza</u>[‡], Maria Enrica Di Pietro[‡], Franca Castiglione[‡], Patricia Fazzio Martins Martinez[†], Giovanni Battista Appetecchi[‡], Andrea Mele[‡] [‡]Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy; [†]School of Chemical Engineering, University of Campinas, Campinas, Brazil [‡]ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Rome, Italy Contact: giselle.dearaujo@polimi.it

INTRODUCTION

Protic ionic liquids (PILs) are potential candidates to replace organic solvents¹. However, the features governing PILs' properties are still unclear. In this framework, NMR becomes a powerful tool to provide structural information and describe the dynamical behavior of PILs.

CONCLUSIONS

NMR provides structural and dynamic information about PILs. In the present work, ¹⁵N NMR showed the site of protonation of the DBU base. Also, ¹⁵N coupled spectra revealed a stable N-H bonding between the H⁺ and the imino nitrogen. PFG-NMR results showed the acidic proton moving with the protonated base as a vehicular mechanism of charge transport.

References: [1] Macfarlane et al., 2014, Energy and Environ. Sci., 7, 232–250 [2] A. N. Galatanu et al., 2005," J. Phys. Chem. B, 109, 11332–11339.