SARS-CoV-2 M^{pro} inhibition by zinc ion: structural features and hints for drug design

Deborah Grifagni,^a Vito Calderone,^{a,b,c} Stefano Giuntini, ^a Francesca Cantini, ^{*a,b,c} Marco Fragai ^{*a,b,c} and Lucia Banci ^{*a,b,c} † Center of Magnetic Resonance, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy

INTRODUCTION

The SARS-CoV-2 main protease (SARS-CoV-2 Mpro) is a cysteine protease that hydrolyses viral polyproteins at several conserved sites. The enzyme represents one of the main drug-target candidates for covid-19 infection because it features a large and deep pocket at the active site and is crucial for viral replication¹. Several inhibitors of SARS-CoV and SARS-CoV-2 Mpro have been designed to form a covalent bond between the thiol group of the catalytic cysteine and the inihibitor². Here we report the X-ray structure of SARS-CoV-2 Mpro both in the apo form and in complex with an isolated zinc ion, and an extensive biophysical analysis of the metal-protein interaction properties in solution.

> Crystal structure of SARS-CoV-2 Mpro bound to Zn²⁺ (1.8 Å resolution PDB code: 7NWX)

 Zn^{2+} is coordinated by the sulphur atom of Cys145, the N ϵ atom of the imidazole ring of His41, a well-defined water molecule and a more labile one shuttling between two positions, thus completing a tetrahedral geometry.

Inhibition of M^{pro} proteolytic activity by Zn²⁺ studied by fluorescence assay-

A fluorimetric assay was carried out by monitoring the fluorescence increase due to the hydrolysis of the peptide substrate (Mca–AVLQ \downarrow SGFR-K(Dnp)K³. The increasing additions of Zn²⁺ inhibit progressively the proteolytic activity of the enzyme. The fit of the kinetic data provided a K_i value of 0.58 \pm 0.19 μ M

REFERENCEES

1. L. Zhang et al. Science, 2020, 368, 409-412 3. Z. Jin *et al. Nature*, 2020, **582**, 289–293

CONCLUSIONS

Zn²⁺ inhibits SARS-CoV-2 M^{pro} by binding at the active site that is ready to accommodate the metal as no significant structural rearrangement are observed. These results suggest that a Zn^{2+} coordinated to suitable ligands capable of interacting with additional sites on the protein surface could provide a significant increase in binding affinity, thus allowing the design of potent and more selective inhibitors of SARS-CoV-2 Mpro.

Centro Risonanzi

regime on the NMR time scale between the free and bound forms

In solution interaction of SARS-CoV-2 Mpro with Zn²⁺ investigated by NMR -

¹⁵N isotopically enriched protein samples were titrated with Zn²⁺ and monitored using 1D ¹H and 2D ¹H-¹⁵N

TROSY HSQC NMR spectroscopy. Spectral changes were observed that indicate an intermediate-to-slow

FIRENZE

grifagni@cerm.unifi.it